CREATINE KINASE-MB (CK-MB)

COD 21792 2 x 60 mL + 2 x 15 mL COD 23792 1 x 60 mL + 1 x 15 mL

Soltanto per uso in vitro nel laboratorio clinico

((

CREATIN KINASI-MB (CK-MB)

Inmunoinibizione

USO PREVISTO

Reagente per la misura della concentrazione di creatina chinasi-MB (CK-MB) nel siero o nel plasma. I valori ottenuti sono una guida utile nella diagnosi e nel controllo dell'evoluzione dell'infarto miocardico acuin

Questo reagente deve essere utilizzato negli analizzatori BA di BioSystems o in un altro analizzatore avente analoghe prestazioni.

SIGNIFICATO CLINICO

La creatin kinasi è composta da 2 catene polipeptidiche, denominate B (cerebrali) e M (muscolari), che danno origine ai tre isoenzimi dimerici: MM (CK-1), MB (CK-2) e BB (CK-3).

Le percentuali dell' attività della CK-MB serica rispetto alla attività CK totale solitamente sono inferiori al 6%. Tuttavia, questi valori aumentano da 10 a 30% in seguito ad un infarto del miocardio dipendendo dall' estensione del tessuto miocardico interessato e dalla localizzazione dell' infarto. Nonostante ciò, si possono riscontrare indici bassi di CK-MB serica dopo un infarto di un miocardio precedentemente sano. Conseguentemente, la diagnosi di infarto del miocardio deve basarsi sulla storia clinica ed altri dati, unitamente all'importanza dell'innalzamento della CK-MB e del suo persistere nel tempo12.

La diagnosi clinica non va eseguita sulla base degli esiti di una sola prova ma deve tener conto anche dei dati clinici e di laboratorio.

PRINCIPIO DEL METODO

Un anticorpo specifico inibisce le due subunità M del CK-MM (CK-3) e la unica subunità M del CK-MB (CK-2), ciò permette la determinazione della subunità B del CK-MB (presumendo l' assenza del CK-BB o CK-1)1,2. La concentrazione catalítica del CK-B, che corrisponde alla metà dell' attività CK-MB, viene determinata impiegando le reazioni accoppiate dell' esochinasi (HK) e glucosio-6-fosfato deidrogenasi (G6P-DH), a partire dalla velocità di formazione del NADPH, letto a 340 nm⁵.

Fosfato di creatina + ADP
$$\xrightarrow{\text{CK-B}}$$
 Creatina + ATP

$$ATP + \text{Glucosio} \xrightarrow{\text{HK}} ADP + \text{Glucosio - 6 - fosfato}$$
Glucosio - 6 - fosfato + NADP+ $\xrightarrow{\text{G6P-DH}}$ Gluconato - 6 - fosfato + NADPH + H*

INDICE

		COD 21792	COD 23792
A.	Reattivo	2 x 60 mL	1 x 60 mL
B.	Reattivo	2 x 15 mL	1 x 15 mL

COMPOSIZIONE

A. Reattivo: Antiumano-CK-M in grado di inibire 2000 U/L di CK-M, Imidazolo 125 mmol/L, EDTA 2 mmol/L, acetato di magnesio 12,5 mmol/L, D-glucosio 25 mmol/L, N-acetilcisteina 25 mmol/L, esochinasi 6800 U/L, NADP 2,4 mmol/L, pH 6,1.

PERICOLO: H360: Può nuocere alla fertilità o al feto. P201: Procurarsi istruzioni specifiche prima dell'uso. P202: Non manipolare prima di avere letto e compreso tutte le avvertenze. P280: Indossare guanti/indumenti protettivi/Proteggere gli occhi/il viso. P308+P313: In caso di esposizione o di possibile esposizione, consultare un medico. P405: Conservare sotto chiave.

B. Reattivo: Fosfato di creatina 250 mmol/L, ADP 15,2 mmol/L, AMP 25 mmol/L, P1, P5-di(adenosina-5'-)pentafosfato 103 mol/L, glucosio-6-fosfato deidrogenasi 8800 U/L.

Per ulteriori avvertenze e precauzioni, fare riferimento alla scheda di sicurezza (SDS) del prodotto.

CONSERVAZIONE E STABILITÀ

Conservare a 2-8°C.

Una volta aperti, i componenti sono stabili fino alla data di scadenza di cui all'etichetta se conservati ben chiusi ed evitandone la contaminazione durante l'uso.

Stabilità di cui alla tabella: I reagenti aperti e conservati nello scomparto refrigerato dell'analizzatore sono stabili 2 mesi.

Indicazioni di deterioramento: Assorbanza dello spazio superiore il limite di cui ai "Parametri di prova".

ALTRI MATERIALI NECESSARI (NON IN DOTAZIONE)

S. Standard di Creatina Chinasi-MB (CK-MB) 1 x 1 mL (Cod. BioSystems: 11824). CK-MB umana. La concentrazione di CK-MB viene indicata nell'etichetta della boccetta. Il valore di CK-MB è tracciabile rispetto al materiale di riferimento ERM-AD455/IFCC (IRMM).

I componenti di origine umana sono stati testati e hanno dato esito negativo alla ricerca di anticorpi anti-VIH e anti-VHC nonché dell'antigene HBs. Tuttavia, vanno trattati con precauzione in quanto sono potenzialmente infettivi.

Ricostituire con 1,0 mL di acqua distillata. Stabile 7 giorni a 2-8°C o per 2 mesi a -20°C. Congelare solo una volta.

PREPARAZIONE DEI REAGENTI

I reagenti sono pronti all'uso

CAMPIONI

Siero o plasma in eparina prelevati mediante procedimenti standard.

La concentrazione totale di CK nel campione deve essere inferiore a 1.000 U/L. Se necessario, diluire il siero 1/2 con NaCl 150 mmol/L.

La CK-MB è stabile almeno 7 giorni a 2-8°C.

CALIBRAZIONE

Ogni giorno effettuare un bianco di reagente e una calibrazione almeno ogni 2 mesi, a sostituzione avvenuta del lotto di reagente o come previsto dalle procedure di controllo della qualità.

CONTROLLO QUALITÀ

Si consiglia l'uso dei sieri di controllo di CK-MB (cod. 18024 e 18061) ai fini della verifica del regolare funzionamento della metodologia di misura. Le concentrazioni di CK e di CK-MB sono indicate nell'etichella della boccetta. Il valore di CK è tracciabile rispetto al sistema di riferimento descritto dal Comitato dei Sistemi di Riferimento per gli Enzimi dell'IFCC e il valore di CK-MB rispetto al materiale di riferimento ERM-AD455/IFCC (IRMM). La tracciabilità viene garantita solo impiegando i reattivi e i procedimenti di misura consigliati da BioSystems.

I componenti di origine umana sono stati testati e sono risultati negativi per la presenza di anticorpi anti-HCV e anti-HIV e per l'antigene HBs. Ciononostante, devono essere maneggiati con precauzione e considerati come potenzialmente infettivi.

Ricostituire il siero con il volume d'acqua distillata di cui all'etichetta. Stabile per 7 gg. a $2-8^{\circ}$ C o per 2 mesi a -20° C. Congelare solo una volta.

Utilizzare il Controllo nel procedimento analitico analogamente ai campioni dei pazienti.

Ogni laboratorio è tenuto a definire un programma di controllo interno della qualità nonché procedure correttive se gli esiti dei controlli non rientrano nei limiti di accettabilità.

VALORI DI RIFERIMENTO

Sono stati descritti valori discriminanti di allerta da 25 U/L = 0,42 nkat/L per lo infarto acuto del miocardio. Ciò nonostante, è preferibile empiegare il limite dello indice di CK-MB del 6% della concentrazione di CK totale¹ come valore discriminante.

Questi valori si danno unicamente a titolo orientativo; si raccomanda che ogni laboratorio stabilisca i propri intervalli di riferimento.

CARATTERISTICHE METROLOGICHE

Le caratteristiche metrologiche di seguito illustrate sono state ottenute con un analizzatore BA400 seguendo le linee guida del Clinical & Laboratory Standards Institute, CLSI.

- Limite di rilevabilità: 7,88 U/L = 0,131 μkat/L.
- Limite di linearità: 1000 U/L = 16.7 ukat/L
- Precisione:

Concentrazione media	Ripetibilità (CV)	In laboratorio (CV)
44 U/L = 0,74 μkat/L	3,8 %	4,8 %
88 U/L = 1,47 μkat/L	1,7 %	2,4 %

 Veridicità: i risultati ottenuti con questi reagenti non hanno evidenziato differenze sistematiche significative se raffrontati con reagenti di riferimento. I dati degli esperimenti comparativi sono disponibili su richiesta.

LIMITI DELLA PROCEDURA

— Interferenze: la bilirubina (fino a 20 mg/dL), l'emolisi (emoglobina fino a 250 mg/dL) e la lipemia (trigliceridi fino a 125 mg/dL) non interferiscono. La presenza nel campione di concentrazioni di CK-BB o di adenilato chinase superiori al valore e di macro o CK mitocondriale interferisce⁶ Eventuali interferenze da altri farmaci e sostanze⁷.

BIBLIOGRAFIA

- 1. Tietz Textbook of Clinical Chemistry, 3rd edition. Burtis CA, Ashwood ER. WB Saunders Co., 1999.
- 2. Friedman and Young. Effects of disease on clinical laboratory tests, 4th ed. AACC Press, 2001
- Würzburg U, Hennrich N, Lang H, Prellwitz W, Neumeier D and Knedel M. Bestimmung der aktivität von creatinkinase MB im serum unter verwendurng inhibierender antikörper. Klinische Wochenschrift 1976; 54: 357-360.
- Gerhardt W and Waldenstrom G. Creatine kinase B-subunit activity in serum after immunoinhibition of Msubunit activity. Clin Chem 1979; 25: 1274-1279.
- IFCC methods for the measurement of catalytic concentration of enzymes. Part 7: IFCC method for creatine kinase. JIFCC 1989; 1: 130-139.
- Urdal P and Landaas S. Macro creatine kinase BB in serum, and some data on its prevalence. Clin Chem 1979; 25: 461-465.
- 7. Young DS. Effects of drugs on clinical laboratory tests, 5th ed. AACC Press, 2000.

PARAMETRI DELLA PROVA

Reagenti utilizzabili in gran parte degli analizzatori automatici. Le apposite istruzioni di applicazione per molti di loro sono disponibili su richiesta.

R1: utilizzare il reagente A, R2: utilizzare il reagente B.

	BA200	BA400
GENERALE		
Denominazione	CK-MB	CK-MB
breve Denominazione	CK-MB	CK-MB
Tipo di campione	siero / plasma	siero / plasma
Modo analisi	tempo fisso bireagente	tempo fisso bireagente
Unità	U/L	U/L
decimali	0	0
Tipo reazione	crescente	crescente
PROCEDIMENTO		
Modo lettura	monocromatica	monocromatica
Filtro principale	340	340
Filtro di riferimento	-	-
Campione	12	12
Vol. R1	240	240
Vol. R2	60	60
Lettura 1 (ciclo)	26	26
Lettura 2 (ciclo)	35	35
Fattore prediluizione	-	-
CALIBRAZIONE E BIANCO		
Tipo di bianco	acqua distillata	acqua distillata
Modo di calibrazione	calibratore sperimentale	calibratore sperimentale
Numero di calibratori	1	1
Curva di calibrazione	-	-
OPZIONI		_
Limite abs bianco	0,400	0,400
Limite bianco cinetico	-	=
Limite linearità	1000	1000
Substrato esausto	-	-